
2 It’s a Snap

∙ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼
𝐴 𝐸
𝐵
𝐶
𝐷
𝐸

Figure 1: Unfilled 3-post snap group table.

snap!
⟹

Figure 2: 𝐸 ∙ 𝐸 ∙ 𝐸 = 𝐼 ; 𝐸 has period 3. Figure 3: Some 4-post group elements.

1. Fill out a 6×6 table like the one in Figure 1, showing the results of each of the 36 possible snaps,
where 𝑋 ∙ 𝑌 is in 𝑋’s row and 𝑌 ’s column. 𝐴 ∙ 𝐵 = 𝐸 is done for you.

∙ 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐼 𝐼 𝐴 𝐵 𝐶 𝐷 𝐸
𝐴 𝐴 𝐼 𝐸 𝐷 𝐶 𝐵
𝐵 𝐵 𝐷 𝐼 𝐸 𝐴 𝐶
𝐶 𝐶 𝐸 𝐷 𝐼 𝐵 𝐴
𝐷 𝐷 𝐵 𝐶 𝐴 𝐸 𝐼
𝐸 𝐸 𝐶 𝐴 𝐵 𝐼 𝐷

2. Which of the elements is the identity element 𝐾 , such that 𝑋 ∙𝐾 = 𝐾 ∙𝑋 = 𝑋 for all 𝑋?

The identity element is 𝐼 , since 𝐼 ∙ 𝐴 = 𝐴 ∙ 𝐼 = 𝐴, 𝐼 ∙ 𝐵 = 𝐵 ∙ 𝐼 = 𝐵, and so forth.

3. Does every element have an inverse? In other words, can you get to the identity element from
every element using only one snap?

Yes you can. The inverses are shown below.

𝐼 ↔ 𝐼 𝐴 ↔ 𝐴 𝐵 ↔ 𝐵 𝐶 ↔ 𝐶 𝐷 ↔ 𝐸

Note that the inverse of an element 𝑋 is denoted 𝑋−1.

4. (a) Is the snap operation commutative (does 𝑋 ∙ 𝑌 = 𝑌 ∙𝑋 for all 𝑋, 𝑌 )?

No, the snap operation is not commutative. For example, 𝐴 ∙ 𝐵 = 𝐸, but 𝐵 ∙ 𝐴 = 𝐷.

(b) Is the snap operation associative (does (𝑋 ∙ 𝑌 ) ∙𝑍 = 𝑋 ∙ (𝑌 ∙𝑍) for all 𝑋, 𝑌 ,𝑍)?

Yes, the snap operation is associative. You can rationalize this as the fact that a 4× 3 grid of posts is snapped
to a single configuration, regardless of which middle row you remove first. This is shown in Figure 4.

5. (a) For any elements 𝑋, 𝑌 , is there always an element 𝑍 so that 𝑋 ∙𝑍 = 𝑌 ?
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snap!
⟹

Figure 4: A 4 × 3 grid of posts has a unique result after the snap operation.

Yes, there is always a way to get from one element to another in one snap. You can prove this by construction.
If element 𝑋 connects 𝑛1 to 𝑛′1, 𝑛2 to 𝑛′2, and 𝑛3 to 𝑛′3, and element 𝑌 connects 𝑚1 to 𝑚′

1, 𝑚2 to 𝑚′
2, and 𝑚3 to

𝑚′
3, then the solution 𝑍 to 𝑋 ∙𝑍 = 𝑌 connects 𝑚1 to 𝑛𝑚′

1
, 𝑚2 to 𝑛𝑚′

2
, and 𝑚3 to 𝑛𝑚′

3
.

A more transparent solution uses inverses. We multiply 𝑋 by 𝑋−1, then by 𝑌 :

𝑋 ∙𝑋−1 ∙ 𝑌 = 𝑌 .

But since every element has an inverse, and the snap operation is associative, we have

𝑋 ∙ (𝑋−1 ∙ 𝑌 ) = 𝑌

⟹ 𝑍 = 𝑋−1 ∙ 𝑌 .

We have thus constructed the element 𝑍.

(b) In (a), is 𝑍 always unique?

Yes. We could try all combinations, but let’s try a proof by contradiction. Suppose we have two solutions 𝑍1
and 𝑍2 so that 𝑍1 ≠ 𝑍2 and

𝑋 ∙𝑍1 = 𝑌
𝑋 ∙𝑍2 = 𝑌 .

That is, we assume that for some 𝑋 and 𝑌 , there are two possible values for 𝑍. We multiply both sides on
the left by 𝑌 −1:

𝑌 −1 ∙𝑋 ∙𝑍1 = 𝑌 −1 ∙ 𝑌 = 𝐼

𝑌 −1 ∙𝑋 ∙𝑍2 = 𝐼.

So 𝑍1, 𝑍2 are both inverses of (𝑌 −1 ∙𝑋). But the inverse of an element is unique; we’ve showed this by listing
them all out! Thus, 𝑍1 = 𝑍2, contradicting our assumption and proving that 𝑍 is unique in 𝑋 ∙𝑍 = 𝑌 .

6. If you constructed a group table using only five of the snap elements, the table would not de-
scribe a group, because there would be entries in the table outside of those 5. Indeed, a group
must be closed under its operation: If we compose any two elements 𝑋 ∙ 𝑌 = 𝑍, 𝑍 must also be
an element of the group. Some subsets of our six elements, however, do happen to be closed
among themselves. Write valid group tables using exactly one, two, and three elements from
the snap group. These are known as subgroups.

Here are tables with 1, 2, and 3 elements:

∙ 𝐼
𝐼 𝐼

∙ 𝐼 𝐴
𝐼 𝐼 𝐴
𝐴 𝐴 𝐼

∙ 𝐼 𝐷 𝐸
𝐼 𝐼 𝐷 𝐸
𝐷 𝐷 𝐸 𝐼
𝐸 𝐸 𝐼 𝐷

7. What do you guess is a good definition of a mathematical group? (Hint: consider your answers
to Problems 2–6.)
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(Answers may vary.)
Definition of group: A group 𝐺 is a set of elements together with a binary operation that meets the

following criteria:

(a) Identity: There is an element 𝐼 ∈ 𝐺 such that for all 𝑋 ∈ 𝐺, 𝑋 ∙ 𝐼 = 𝐼 ∙𝑋 = 𝑋.

(b) Closure: If 𝑋, 𝑌 are elements of the group, then 𝑋 ∙ 𝑌 is also an element of the group.

(c) Invertibility: Each element 𝑋 has an inverse 𝑋−1 such that 𝑋 ∙𝑋−1 = 𝑋−1 ∙𝑋 = 𝐼 .

(d) Associativity: For all elements 𝑋, 𝑌 , and 𝑍, 𝑋 ∙ (𝑌 ∙𝑍) = (𝑋 ∙ 𝑌 ) ∙𝑍.

8. Notice that 𝐸 ∙𝐸 ∙𝐸 = 𝐼 (See Figure 2). We saw that 𝐸 has a period of 3 when acting upon itself.
Which elements have a period of

(a) 1?

𝐼 is the only element with a period of 1, since 𝐼 = 𝐼 .

(b) 2?

𝐴, 𝐵, and 𝐶 have periods of 2, since for each 𝑋 ∈ 𝐴,𝐵, 𝐶 we have 𝑋 ∙𝑋 = 𝐼 .

(c) 3?

𝐷 and 𝐸 have periods of 3, since for each 𝑌 ∈ 𝐷,𝐸 we have 𝑌 ∙ 𝑌 ≠ 𝐼 , but 𝑌 ∙ 𝑌 ∙ 𝑌 = 𝐼 .

9. Answer the following with the one-, two-, and four-post snap groups 𝑆1, 𝑆2 and 𝑆4. These are
just the analogous groups for connections between rows of one, two, and four posts.

(a) How many elements does the group have?

𝑆1 has 1! = 1 elements. 𝑆2 has 2! = 2 elements. 𝑆4 has 4! = 24 elements.

(b) Systematically draw and name the elements.

𝐼
𝐼 𝐴

Figure 5: Elements of 𝑆1. Figure 6: Elements of 𝑆2.

𝐼 𝐴 𝐵 𝐶 𝐷 𝐸

𝐹 𝐺 𝐻 𝐽 𝐾 𝐿

𝑀 𝑁 𝑂 𝑃 𝑄 𝑅

𝑆 𝑇 𝑈 𝑉 𝑊 𝑋
Figure 7: Elements of 𝑆4.

(c) Make a group table of these elements. For four posts, instead of creating a table, give the
number of entries that the table would have.

Here are group tables for 𝑆1 and 𝑆2.
There are 576 entries in the 𝑆4 table; the full table is given at the end of the chapter, in Figure 12, for the

demented.
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∙ 𝐼
𝐼 𝐼

∙ 𝐼 𝐴
𝐼 𝐼 𝐴
𝐴 𝐴 𝐼

Figure 8: Group table for 𝑆1. Figure 9: Group table for 𝑆2.

(d) What is the relationship of the 𝑆3 table to this new table?

Both 𝑆1’s and 𝑆2’s tables can be found within the original table for 𝑆3, because they are subgroups of 𝑆3. In
turn, 𝑆3 is a subgroup of 𝑆4.

10. What is a shortcut for generating all elements of a snap group without drawing out the possible
configurations?

(Answers may vary.)
One way is to treat each element as a list of indices. For example, 𝐼 is the ordered triple (1, 2, 3) because

it takes column 1 to 1, 2 to 2, and 3 to 3. 𝐴 is (1, 3, 2), because it takes 1 to 1, 2 to 3, and 3 to 2.1

This is a bit more compact and easy to work with: You can simply choose the indices for each configuration
rather than make a drawing. (It also makes it easy to write a program to calculate. In fact, it is behind every
table and diagram in this chapter.)

11. (a) How many elements would there be in the five-post snap group?

There would be 5! = 120 elements in 𝑆5.

(b) How many entries would its table have?

There would be 5!2 = 14400 entries in 𝑆5’s table.

(c) What possible periods would its elements have? Make sure you include a period of six!

This is a more difficult question. We must ask what characteristics of an element determine its period.
If we observe the periodicity of an element with a pretty large period, say, one from 𝑆5 with a period of 6,

you can see how a relatively large period can arise. This is shown in Figure 11.
We can split up this element into two components: a component with period 3 and one with period 2. Let’s

call these components 𝐶3 and 𝐶2. After 2 steps, the 𝐶3 has not completed one period, even though 𝐶2. After
3 steps, 𝐶3 has completed one period, but 𝐶2 has gone through 3

2 . It takes lcm(2, 3) = 6 steps before both
components “line up!”

Even if it’s not obvious, all snap elements can be split up into some number of these cyclic components.
For example, the element from 𝑆8 shown in Figure 10 comprises two size 3 and one size 2 component. It
therefore has a period of lcm(2, 3, 3) = 6. Recall that the least common multiple of a set of numbers, here
denoted lcm, is the smallest (positive) integer which they all evenly divide. For example, lcm{8, 4} = 4,
lcm{2, 3, 5} = 30, and lcm{9, 12} = 36. Note that it does not have a period of 2 ⋅ 3 ⋅ 3 = 18—we take the least
common multiple, not the product.

Figure 10: This element from 𝑆8 has components of size 2, 3, 3.

1This representation may be called the one-line notation of a permutation. You can also write a permutation by writing what index
goes to which to a 2 × 𝑛 matrix, where the top row gives the start index and the bottom row gives the end index; this is two-line notation,
due to Cauchy. Other notations exist; a one you will find in lots of combinatorics texts writes the cycles in groups of parentheses. For
example, the one-line (2, 5, 4, 3, 1) becomes (1 2 5)(3 4): The elements at indices 1, 2, 5 are cycled, as are the elements at indices 3, 4. In
this notation, the identity permutation on 𝑛 elements is (1)(2)(3)...(𝑛), since it comprises 𝑛 1-cycles. Often 1-cycles—i.e., elements that
do not move—are simply omitted.
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Let us consider every possible decomposition of an element in 𝑆5. It could have components of size 1, 1, 1, 1, 1,
yield a period of 1; components of size 1, 1, 1, 2, yielding a period of 2; components of size 1, 1, 3, yielding a
period of 3; components of size 1, 4, yielding a period of 4; a component of size 5, yielding a period of 5; and
component of size 1, 2, 3, yielding a period of 6. Thus, periods 1, 2, 3, 4, 5, 6 are the only ones achievable.

(d) Extend your answers for Problems a through c to 𝑀 posts per row.

There are (a) 𝑀! elements in the 𝑀-post snap group, and thus (b) 𝑀!2 elements in the corresponding group
table. The possible periods are harder to calculate, but they can be generated like so:

Figure 11: This element from 𝑆5 has a period of 6.

Suppose we have some integers 𝑥𝑖 > 0 and if you add them all, the sum is 𝑀 . Then lcm(𝑥1, 𝑥2,⋯ , 𝑥𝑛) is a
valid period; the least common multiple of all 𝑥𝑖 is a possible period.

In set builder notation, the set of possible periods 𝑃𝑛 for the 𝑛-post snap group as

𝑃𝑛 =

{
lcm(𝑥1, 𝑥2,⋯ , 𝑥𝑛)

|||||
𝑥𝑖 are positive integers and

∑
𝑖
𝑥𝑖 = 𝑛

}
.

In English: 𝑝 is the period of some element of the 𝑛-post snap group if and only if it is the least common
multiple of some set of numbers, call them 𝑥𝑖, which sum to 𝑛. In our case of size 5, we actually got every
period from one to six, but the set of possible periods is not necessarily a contiguous range. For example, the
possible periods in the 7-post snap group is {1, 2, 3, 4, 5, 6, 7, 10, 12}.

A full understanding of these periods requires advanced mathematics. For example, the maximum such
period (i.e. max𝑃𝑛) is known as Landau’s function, 𝑔(𝑛). It turns out that ln 𝑔(𝑛) ∼

√
𝑛 ln 𝑛 as 𝑛 → ∞, a result

proved in 1902 by Edmund Landau. Therefore, 𝑔(𝑛) is sub-exponential but grows faster than any polynomial.

12. A permutation of a set of things is an order in which they can be arranged. What is the relation-
ship between the set of permutations of 𝑚 things and the 𝑚-post snap group?

We can make a straightforward correspondence between a permutation of 𝑚 things and an element of the
𝑚-post snap group. If we think back to the idea of treating each element of the group as a list of indices, the
correspondence is obvious. For example, 𝐼 is the ordered triple (1, 2, 3) because it takes column 1 to 1, 2 to
2, and 3 to 3. 𝐴 is (1, 3, 2), because it takes 1 to 1, 2 to 3, and 3 to 2. But each ordered triple is a permutation
of 1, 2, 3! This extends to any 𝑚.
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